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1. Introduction

One of the main problems arising in the analytic
theory of partial differential equations is a charac-
terization of data given on a manifold S for which
a solution of a boundary value problem is an an-
alytic function in a variable normal to S. In gen-
eral, one can easily obtain formal power series solu-
tions in a variable normal to S, and by the Cauchy-
Kowalevski theorem it is convergent if S is not the
characteristic variety of the equation.
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In other cases formal solutions need not to be con-
vergent. At this point there arise natural questions:

• under which conditions on the data the formal
solution is convergent;

• what is the meaning of a formal solution;

• is it an asymptotic expansion of an actual solu-
tion;

• can and how the actual solution be constructed
from the formal one.
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In case of ordinary differential equations the an-
swers to those questions were given in 80-ties and
90-ties of the XX century by the (multi)summability
theory. On the other hand in the case of partial
differential equations the study of those problems
started at the end of the XX century.
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In the lecture we shall give a survey of solutions to
those problems for some classes of partial differen-
tial equations. A special attention is put on results
obtained by ourselves concerning convergence and
Borel summability of formal solutions of the heat
equation and its generalizations.
Finally we shall introduce a definition of analytic
functions on metric measure spaces and state that
they satisfy some uniqueness property.
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2. One dimensional case.

The starting point in the study of summability of
formal solutions to PDE’s is the paper by Lutz,
Miyake and Schäfke [LMS-99]. They studied initial
value problem to the one dimensional heat equation{

∂tu− ∂2
zu = 0,

u|t=0 = u0 ∈ O(B), B a ball in C.(1)

Its formal power series solution û is given by

(2) û(t, z) =
∑∞

j=0

∂2ju0(z)

j!
tj.
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In general the series û is divergent, but Gevrey of
order k = 1, i.e.,∣∣∂2ju0(z)

j!

∣∣ ≤ Cj+1(j!)k with k = 1,

loc. uni. in B.

The problem of a characterization of initial data
ensuring convergence was solved already by Kowale-
vska in [Kow 1875]. She proved that the solution
û is convergent if and only if the initial data u0
can be analytically extended to an entire function
of exponential order 2, i.e. |u0(z)| ≤ C exp{c|z|2}.

7



To state the main result of [LMS-99] recall
Definition. Let d ∈ R, U ⊂ Cn and φ̂j ∈

O(U). A formal power series

φ̂(t, z) =
∑∞

j=0

φj(z)

j!
tj

is 1-summable (or Borel summable) with respect
to t in the direction d if its Borel transform defined
on Bε × U by(

B̂φ̂
)
(s, z) =

∑∞
j=0

φj(z)

j! · Γ(1 + j)
sj

extends holomorphically to a domain
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(
Bϵ ∪ S(d, ϵ)

)
× U with some 0 < ϵ

and the extension satisfies

sup
z∈U1

|
(
B̂φ̂

)
(s, z)| ≤ AeB|s| for s ∈ S(d, ϵ1)

with some A,B < ∞, (U1 b U and 0 < ϵ1 < ϵ).
If so, then the function

φθ(t, z) =
1

t

∫ ∞(θ)

0
B̂φ̂(s, z)e−(s/t) ds

is called the 1-Borel sum of φ̂.
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Theorem LMS (Lutz, Miyake, Schäfke, 1999).
Let u0 ∈ A(B), B a ball at {0}.
The formal power series solution (2) of (1) is
Borel summable in a direction d loc. uni. in B
iff u0 extends analytically to a function holomor-
phic on a domain

D(d, ε) ⊃ S(d/2, ε) ∪ S(d/2 + π, ε)

with some ε > 0 which has in D(d, ε) at most
exponential growth of order at most 2 loc. uni.
in B.
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The result was extended to the case of multi-
summable solutions of (1) by Balser [B-99];
to formal power series satisfying certain differential
recursion formulas by Balser, Miyake [BM-99];
to the equation ∂

p
t u = ∂

q
zu, p < q, by Miyake [Miy-

99]
and by Ichinobe [I-01], who also gave explicite inte-
gral representations of the Borel sums of solutions
in terms of the Barnes hypergeometric series qFp−1.
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General linear partial differential equations with
constant coefficients in one space variable(

∂mt p(∂z) −
∑m

i=1
∂m−i
t pi(∂z)

)
u = 0,

where p and pi are polynomials, were investigated
by Balser. In [B-02] he studied the case when the
Newton polygon of the equation has only one slope
and proved k-summability of a (unique) normalized
solution. While in [B-04] he proved multisummabil-
ity of normalized solutions to equations with New-
ton polygon having several slopes.
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The results were further extended in [B-05] to so-
lutions of some integral-differential equations in two
variables. Another proof of Balser’s results in a
more general framework of fractional equations was
given by Michalik [M-10].

In [I-03] Ichinobe studied the following problem
∂
pν
t u =

ν∑
j=1

aj∂
p(ν−j)
t ∂

jq
z u, q > p ≥ 1,

∂kt u|t=0 = 0 for k = 0, . . . , pν − 2,

∂
pν−1
t u|t=0 = u0 ∈ A(B).
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He proved that its formal power series solution û
is p/(q− p)-summable in the direction d (also in d′

with d′ = d mod (2pi/p)) iff u0 extends holomor-
phically to a domain D containing union of some
sectors and has in D at most exponential growth of
order at most q/(p− q) loc. uni. in Ω.
He also gave an explicite integral representation of
the Borel sum of û in terms of the Meijer function
G
m,n
p,q .
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Ichinobe also studied the Cauchy problem to the
equation

∂tu = P (t, ∂z)u, P (t, ∂z) =
∑
i,α

aiαt
i∂αz

Assuming that the Newton polygon of P has only
one slope he proved that the formal solution is k
summable if the initial data are holomorphic in a
sum of sectors with suitable exponential growth.

From the above papers it follows that formal solutions of

non-Kowalevskian PDEs are summable only if the initial data

satisfy quite restrictive conditions.
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3. Multidimensional case

The study of the multidimensional equations was
initiated by Ōuchi [O-02]. He studied the summa-
bility of formal solutions to linear PDEs which can
be considered as a perturbation of ODEs.

(E)

 ∂mt u +
∑

(j,α)∈Λ
aj,α(t)∂

j
t ∂

α
z u = f (t, z),

∂itu|t=0 = φi for i = 0, . . . ,m− 1.

If ordt aj,α ≥ max(0, j−m+ 1), then the problem
has a unique formal solution, which is convergent if
j + |α| ≤ m for all (j, α) ∈ Λ.
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Ōuchi defined the Newton polygon N(E) and proved
that if
(j + |α|, ordt aj,α − j) ∈ intN(E) for (j, α) ∈ Λ
with α ̸= 0,
then the formal solution is multisummable in a suit-
able multidirection; the levels of summability are
the slopes of N(E).
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In [Y-12] Yamazawa studied the equation

∂tu = ∂2
zu + t(t∂)3u.

He proved that if initial data is an entire func-
tion of exponential order 2, then the solution is
Borel summable in directions d ̸∈ {0, π}. Later
he showed that the same conclusion holds for func-
tions of finite exponential order. Motivated by this
and similar examples Tahara posed the problem.
Assuming that initial data and f are entire func-
tions of exponential order γ determine minimal
γ guaranteeing summability of a solution to (E).
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To solve this problem he and Yamazawa intro-
duced in [TY-13]:
t-Newton polygon Nt(E),
the set of admissible exponents C
and the set of singular directions Z .
They proved that under conditions (A1) − (A4)
if initial data and f are entire functions of expo-
nential order γ ∈ C, then the formal solution of
(E) is (kp∗, . . . , k1)-multisummable in any direc-
tion d ̸∈ Z ; ki are the slopes of Nt(E).
This result is in accordance with previous ones.
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4. Multidimensional heat equation

In the case of the multidimensional heat equation{
∂tu− ∆zu = 0,
u|t=0 = u0 ∈ A(Ω), Ω ⊂ Rn,

(3)

where ∆ is n-dimensional Laplace operator,
conditions for k-summability of formal solutions were
obtained by Balser and Malek [BM-04].
However the conditions are stated in terms of some
auxiliary function expressed in terms of a formal
solutions itself and not in terms of the initial data.
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Using the modified Borel transformation Michalik
obtained in [M-06] conditions for Borel summability
in terms of the initial data. He proved that the for-
mal solution of (3) is Borel summable in a direction
d iff the auxiliary function

Φn(z, τ ) =

{ ∫
∂B(1) u0(z + τy)dS(y) if n is odd,∫
B(1)

u0(z+τy)√
1−x2 dy if n is even

is holomorphic at the origin in z variable and can be
analytically continued with respect to τ in sectors
in directions d/2 and π+d/2, and this continuation
is of exponential order at most 2.
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5. Mean values

5.1. Spherical and solid means.

Let Ω be a domain in Rn and x̊ ∈ Ω. For 0 <
R < dist(x̊, ∂Ω) define spherical and solid means
of a continuous function u ∈ C0(Ω) by

M(u, x̊;R) =
1

σ(n)Rn

∫
B(x̊,R)

u(x)dx,

N(u, x̊;R) =
1

nσ(n)Rn−1

∫
S(x̊,R)

u(x)dS(x).
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The relations between M(u;R) and N(u;R) are
given by

Lemma 1 Let u ∈ C0(Ω). Then for any x̊ ∈ Ω
and 0 < R < dist(x̊, ∂Ω),(R

n

∂

∂R
+ 1

)
M(u, x̊;R) = N(u, x̊;R).

If u ∈ C2(Ω), then

n

R

∂

∂R
N(u, x̊;R) = M(∆u, x̊;R).
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5.2. Characterization of real analyticity

Real analyticity of a function can be characterized
in terms of its integral means by the Pizzetti series.

Theorem 1 (Mean-value property). ([ L-12].) Let
u ∈ A(Ω), x̊ ∈ Ω. Then M(u, x̊;R) and N(u, x̊;R)
are analytic functions at the origin and for small
R,

M(u, x̊;R) =
∑∞

k=0

∆ku(x̊)

4k
(
n
2 + 1

)
k
k!

R2k,(4)

N(u, x̊;R) =
∑∞

k=0

∆ku(x̊)

4k
(
n
2

)
k
k!

R2k.(5)

Here (a)k = a(a + 1) · · · (a + k − 1) is the Pochhamer symbol.
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Theorem 2 (Converse to the mean value prop-
erty). ([ L-12].) Let ρ ∈ C0(Ω,R+), u ∈ C∞(Ω).
If

Ñ(x;R) =

∞∑
k=0

∆ku(x)

4k
(n

2

)
kk!

R2k

is convergent locally uniformly in
{(x,R) : x ∈ Ω, |R| < ρ(x)},
then u ∈ A(Ω) and N(u, x;R) = Ñ(x;R) for
x ∈ Ω, R < min

(
ρ(x), dist(x, ∂Ω)

)
.
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5.3. Functions of Laplacian growth.

In order to control the growth of iterated Laplacians
of smooth functions Aronszajn, Creese, Lipkin in-
troduced the notion of the Laplacian growth.
Definition [ACL-83]. Let ϱ > 0 and τ ≥ 0.
A function u smooth on Ω ⊂ Rn is of Laplacian
growth (ϱ, τ ) if for every K b Ω and ε > 0 one
can find C = C(K, ε) < ∞ such that for k ∈ N0,

(6) sup
x∈K

|∆ku(x)| ≤ C(τ + ε)2k(2k)!1−1/ϱ.
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Definition. ([Boas]) Let ϱ > 0 and τ ≥ 0. An en-
tire function F is said to be of exponential growth
(ϱ, τ ) if for every ε > 0 one can find Cε such that
for any R < ∞

sup
|z|≤R

|F (z)| ≤ Cε exp{(τ + ε)Rϱ}.

The exponential growth of an entire function can be also expressed in

terms of estimations of its Taylor coefficients.
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It appears that a function u of Laplacian growth
(ϱ, τ ) on Ω is in fact real-analytic on Ω (see [ACL-83,
Theorem 2.2 in Chapter II]). So the spherical and
solid means N(u, x;R) and M(u, x;R) are expres-
sed by the Pizzetti series valid for x ∈ Ω and R
small enough. However due to estimation (6) both
functions N(u, x;R) and M(u, x;R) can be ex-
tended to entire functions of exponential growth.
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Theorem 3 ([ L-12].) Let u ∈ A(Ω), ϱ > 0 and
τ ≥ 0. If u is of Laplacian growth (ϱ, τ ), then
N(u, x;R) and M(u, x;R) extend holomorphi-
cally to entire functions of exponential growth
(ϱ, τϱ/ϱ) loc. uni. in Ω.

Theorem 4 ([ L-12].) Let u ∈ A(Ω). If M(u, x;R)
defined for x ∈ Ω and 0 ≤ R < dist(x, ∂Ω) ex-

tends to an entire function M̃(u, x; z) of expo-
nential growth (ϱ, τ ) loc. uni. in Ω, then u is of

Laplacian growth
(
ϱ, (ϱτ )1/ϱ

)
. Analogous result

holds for N(u, x;R).
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5.5. Application to the heat equation

Using the above theorems with ρ = 2 we get

Theorem 5 ([ L-12]). Let 0 < T ≤ ∞, u0 ∈
A(Ω). The formal power series solution

(7) û(t, z) =
∑∞

j=0

∆ju0(z)

j!
tj

of the n-dimensional heat equation (3) is con-
vergent for |t| < T loc. uni. in Ω
iff N(u0, z;R) and/or M(u0, z;R) extend to an
entire function of exponential growth (2, 1/(4T ))
loc. uni. in Ω.
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Using the above ideas and results from his pre-
vious paper [M-06] S. Michalik obtained a charac-
terization of Borel summable solutions of the heat
equation (3).

Theorem.([M-12]). Let d ∈ R, U ⊂ Cn and
û be the formal power series solution (7) of the
heat equation (3) with u0 ∈ O(U).
Then the following conditions are equivalent
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• û is 1-summable in the direction d;

• M(u0; z, R) ∈ O2
(
U × (Ŝd/2 ∪ Ŝd/2+π)

)
;

• N(u0; z, R) ∈ O2
(
U × (Ŝd/2 ∪ Ŝd/2+π)

)
.

Furthermore, the 1-sum of û is given by

ud(t, z) = 1
(4πt)n/2

∫
(eid/2R)n

exp
{−eiθ|x|2

4t

}
u0(x + z)dx

if the integral is well defined.
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5. Heat equation with variable coefficients

The general one dimensional heat equation ∂tu −
a(z)∂2

zu = q̂(t, z) with a variable coefficient a(z)
and inhomogeneity q̂(t, z) was studied by Balser
and Loday-Richaud [BL-09].

Costin, Park and Takei in [CPT-12] studied Borel
summability of the IVP{

∂tu = a(z)∂2
zu,

u(0, z) = 1
1+z2 ,

where a(z) is a quartic polynomial.
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7. Heat equations on manifolds

Let M be a real analytic manifold of dimension n
and X1, . . . , Xd real analytic linearly independent
vector fields on M. Define a Laplace type operator
on M by ∆̃ = X2

1 + · · ·+X2
n and consider the IVP{

∂tv − ∆̃v = 0,
v|t=0 = v0, v0 ∈ A(M).

(8)

The formal power series solution of (8) is given by

(9) v̂(t, y) =
∑∞

k=0

∆̃kv0(y)

k!
tk.
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It is well known that if vector fields Xi commute,

(C) [Xi, Xj] = 0 for i, j = 1, . . . , n,

then for a fixed ẙ ∈ M one can find a real analytic
diffeomorphism Φ : Rn ⊃ Ω onto−−−→ V ⊂ M s. t.
ẙ ∈ V = Φ(Ω) and Φ−1

∗ (Xi) = ∂
∂zi

for i = 1, . . . , n.

Set BΦ(y,R) = Φ
(
B(z, R)

)
, SΦ(y,R) = Φ

(
S(z, R)

)
,

with z = Φ−1(y), 0 < R < dist(z, ∂Ω).
Define a measure µΦ(A) =

∫
Φ−1(A) dξ for A ⊂ V .
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Theorem 6 ([ L-14]). Let 0 < T ≤ ∞. The
formal power series solution (9) of the heat type
equation (8) is convergent for |t| < T loc. uni.
in V if and only if the solid integral mean

MΦ(v0, y;R) =
1

µΦ
(
BΦ(y,R)

) ∫
BΦ(y,R)

v(η)dµΦ(η)

(and/or the spherical integral mean NΦ(v0, y;R))
extends to an entire function of exponential growth
(2, 1/(4T )) loc. uni. in V .
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Theorem 7 ([ L-14]). Let M be a real analytic
manifold, v0 ∈ A(M) and X1, . . . , Xn real ana-
lytic linearly independent commuting vector fields
on M. Fix ẙ ∈ M and let Φ, Ω, V , BΦ, µΦ and
dSΦ be as in Theorem 6. Set u0 = v0 ◦ Φ and
assume that u0 and Φ extend to a complex neigh-
borhood U ⊂ Cn of Ω. Then v0 extends to the
neighborhood Φ(U) of V in the complexification
of M.
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Let d ∈ R and let v̂ be the formal solution (9)
of the heat type equation (8). Then TFCAE:

1. v̂ is Borel summable in d loc. uni. in Φ(U);

2.MΦ(v0; z, R) extends to Φ(U)×
(
Dϵ∪S(d/2, ϵ)∪

S(d/2+π, ϵ)
)
with 0 < ϵ and for any U1 b U ,

0 < ϵ1 < ϵ and R ∈ S(d/2, ϵ1)∪S(d/2+π, ϵ1),

supz∈Φ(U1) |MΦ(v0; z, R)| ≤ AeB|R|2;

3. The same holds for NΦ(v0; z, R).
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8. Nonlinear equations

The study of summability of formal solutions to
nonlinear partial differential equations is just start-
ing. Ōuchi in [O-06] studied formal solutions for a
class of singular partial differential equations with
polynomial nonlinearity and proved their summa-
bility under the assumption of vanishing initial data.
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8.1. Burgers equation

In [ L-09] we considered the IVP for the Burgers
equation

(BE)

{
∂tu− ∂2

zu = ∂z
(
u2
)
,

u|t=0 = u0.

The formal power series solution is given by

û(t, z) =
∑∞

k=0

uk(z)

k!
tk,

where
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uk+1 = ∂2uk + vk,

vk =
∑

κ∈N2
0, κ1+κ2=k

∂
(
uκ1uκ2

)
.

Applying the Cole-Hopf transformation

u(t, z) 7→ v(t, z) = exp
{∫ z

u(t, y)dy
}

which transforms (BE) into the heat equation and

its inverse v(t, z) 7→ u(t, z) =
(

ln v(t, z)
)′
z we

proved
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Theorem 8 [ L-09]. Let u0 ∈ A(B), B - a ball.
If the formal power series solution of (BE) is
convergent loc. uni. in B, then u0 extends to a
meromorphic function of the form

(10) u0(z) = 2az + b+

∞∑
n=1

( 1

z − zn
+

1

zn
+

z

z2
n

)
,

where a, b ∈ C and
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{zn}n∈N is a sequence of zn ∈ C∗ ∪ {∞} with
nondecreasing modulus such that

(11)

∞∑
n=1

1

|zn|2+ε
< ∞ for any ε > 0.

Conversely, if u0 extends to a meromorphic
function of the form (10) and (11) holds, then
the formal solution of (BE) is convergent in a
nbh. of {0}.
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Theorem 9 [ L-09]. Let u0 ∈ A(B) and d ∈ R.
If the formal power series solution of (BE) is
Borel summable in the direction d loc. uni. in
a nbh. of {0}, then u0 extends analytically to a
function meromorphic on a domain

D(d, ε) ⊃ S(d/2, ε) ∪ S(d/2 + π, ε)

with some ε > 0 which has in D(d, ε) at most
simple poles with residua in N.
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Conversely, if u0 extends to a meromorphic
function on D(d, ε) of the form

u0(z) =

∞∑
n=1

( 1

z − zn
+

1

zn
+

z

z2
n

)
+ v(z),

where 0 ̸= zn ∈ D(d, ε) satisfy (11),
v is holomorphic on D(d, ε), |v(z)| ≤ a|z| + b,
then the formal power series solution of (BE) is
Borel summable in the direction d loc. uni. in a
nbh. of (0).
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9. Characterization of real analyticity

Theorem 10 ([ L-18]). Let u ∈ C0(Ω).
If there exist functions uk ∈ C0(Ω) for k ∈ N0
and ϵ ∈ C0(Ω,R+) such that

M(u; x,R) =

∞∑
k=0

uk(x)Rk,

locally uniformly in {(x,R) : x ∈ Ω, |R| < ϵ(x)},
then u is real analytic on Ω and for l ∈ N0,

u2l+1 = 0 and u2l =
(

4l
(n

2 + 1
)
ll!
)−1

· ∆lu
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We proposed a definition of analytic functions on MMS.

Definition ([ L-18]). Let (X, ρ, µ) be a metric
measure space with a metric ρ and a Borel regular
measure µ which is positive on open sets and finite
on bounded sets. Let Ω be an open subset of X .
For any x ∈ Ω and 0 < R < dist(x, ∂Ω) define a
solid mean of a continuous function u ∈ C0(Ω) by

MX(u; x,R) =
1

µ(Bρ(x,R))

∫
Bρ(x,R)

u(y) dµ(y).
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Definition ([ L-18]). Let (X, ρ, µ) be a metric
measure space and Ω be an open subset of X . Let
u ∈ C0(Ω,C).
We say that u is (X, ρ, µ)-analytic on Ω and write
u ∈ AX(Ω, ρ, µ) if there exist functions ul ∈ C0(Ω)
for l ∈ N0 and ϵ ∈ C0(Ω,R+) such that

MX(u; x,R) =
∑∞

l=0
ul(x)Rl.

locally uniformly in {(x,R) : x ∈ Ω, |R| < ϵ(x)}.

48



Theorem 11 ([ L-20]). Let (X, ρ) be a proper,
locally uniquely geodesic, metric space satisfying
property (P) and let µ be a Borel measure that is
finite on compact sets and positive on open sets.
Let Ω be a connected open subset of X and let
u ∈ C0(Ω) be an (X, ρ, µ)-analytic function on
Ω.
If u vanishes on a nonempty open set U ⊂ Ω,
then u ≡ 0 on Ω.
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